Fermilab achieves milestone beam power for neutrino experiments

Thanks to recent upgrades to the Main Injector, Fermilab’s flagship accelerator, Fermilab scientists have produced 700-kilowatt proton beams for the lab’s experiments. Photo: Peter Ginter

Adapted from Fermilab’s article of January 26.

Fermilab’s accelerator is now delivering more neutrinos to experiments than ever before.

The U.S. Department of Energy’s Fermi National Accelerator Laboratory has achieved a significant milestone for proton beam power. On Jan. 24, the laboratory’s flagship particle accelerator delivered a 700-kilowatt proton beam over one hour at an energy of 120 billion electronvolts.

The Main Injector accelerator provides a massive number of protons to create particles called neutrinos, elusive particles that influence how our universe has evolved.

With more beam power, scientists can provide more neutrinos in a given amount of time. At Fermilab, that means more opportunities to study these subtle particles at the lab’s three major neutrino experiments: MicroBooNE, MINERvA and NOvA.

“Neutrino experiments ask for the world, if they can get it. And they should,” said Dave Capista, accelerator scientist at Fermilab. Even higher beam powers will be needed for the future international Deep Underground Neutrino Experiment, to be hosted by Fermilab. DUNE, along with its supporting Long-Baseline Neutrino Facility, is the largest new project being undertaken in particle physics anywhere in the world since the Large Hadron Collider…

“This step-by-step journey was a technical challenge and also tested our understanding of the physics of high-intensity beams,” said Fermilab Chief Accelerator Officer Sergei Nagaitsev. “But by reaching this ambitious goal, we show how great the team of physicists, engineers, technicians and everyone else involved is.” The 700-kilowatt beam power was the goal declared for 2017 for Fermilab’s accelerator-based experimental program.

“The real bonus is having two machines doing the job,” said Ioanis Kourbanis, who led the upgrade effort. “Before we had the Recycler merging the bunches, the Main Injector handled the merging process, and this was time consuming. Now, we can accelerate the already merged bunches in the Main Injector and meanwhile prepare the next group in the Recycler.  This is the key to higher beam powers and more neutrinos.”

Fermilab scientists and engineers were able to marry two advantages of the proton acceleration technique to generate the desired truckloads of neutrinos: increase the numbers of protons in each bunch and decrease the delivery time of those proton to create neutrinos.

“Attaining this promised power is an achievement of the whole laboratory,” Nagaitsev said. “It is shared with all who have supported this journey.”

The new heights will open many doors for the experiments, but no one will rest long on their laurels. The journey for high beam power continues, and new plans for even more beam power are already under way.

Read the full article.